Skip to main content
Log in

Effect of working fluid inventory and heat input on transient and steady state behavior of a thermosyphon

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The effect of working fluid inventory and heat input on the performance of thermosyphon is investigated in this paper. First, a thermosyphon with diameter of 16 mm made of steel with toluene as working fluid and the length of the evaporator, adiabatic and condenser section 10, 23 and 17 cm was considered, respectively. The working fluid inventory was considered 0.1, 0.14, 0.18 and 0.24 of total volume of thermosyphon and in each case 54–235 W of heat input applied to the evaporator area also. In order to evaluate the transient behavior of the thermosyphon, in any amount of working fluid, 28 W of heat input was considered and temperature of the evaporator area were recorded at different times. The results showed that in startup, in the values of the working fluid equal to 0.14, 0.18 and 0.24, the evaporator temperature has fluctuated behavior that is indicative of the occurrence of geyser boiling phenomenon. When the volume of the working fluid was more than 0.24, thermosyphon performance was associated with vibration, indicating a high fluidity and a lack of proper functioning of the thermosyphon. The amount of optimal working fluid with respect to the total thermal resistance of thermosyphon is equal to 0.18 that in this case, the efficiency of thermosyphon at different levels of heat input is between 73 and 78%. In addition, in any amount of working fluid, increase of heat input leads to increment in the evaporator and condenser heat transfer coefficient increases and reduction in the total thermal resistance of thermosyphon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

C p :

Specific water heat capacity (J kg−1 K−1)

d :

Diameter (m)

F.R:

Ratio of the volume of the operating fluid to the total volume of the thermosyphon

h :

Heat transfer coefficient (W m−2 K−1)

I :

Electric current (A)

K :

Thermal conductivity (W m−1 K−1)

L :

Length (m)

\(\dot{m}\) :

Mass flow of water (kg s−1)

Q :

Heat value (W)

R :

Resistance (kW−1)

T :

Temperature (°C)

t :

Time (s)

V :

Potential difference (V)

x :

Distance from evaporator end (cm)

C:

Condenser

E:

Evaporator

I:

Internal

In:

Inlet

O:

External

Out:

Outlet

P:

Radius of pipe wall

S:

Steam

T:

Total

W:

Wall

References

  1. Alhuyi Nazari M, Ahmadi MH, Ghasempour R, Shafii MB. How to improve the thermal performance of pulsating heat pipes: a review on working fluid. Renew Sustain Energy Rev. 2018;91:630–8. https://doi.org/10.1016/j.rser.2018.04.042.

    Article  CAS  Google Scholar 

  2. Reay D, McGlen R, Kew PA. Heat pipes: theory, design, and applications. 6th ed. Elsevier; 2014.

  3. Chan CW, Siqueiros E, Ling-Chin J, Royapoor M, Roskilly AP. Heat utilisation technologies: a critical review of heat pipes. Renew Sustain Energy Rev. 2015;50:615–27. https://doi.org/10.1016/J.RSER.2015.05.028.

    Article  CAS  Google Scholar 

  4. Ramezanizadeh M, Alhuyi Nazari M, Ahmadi MH, Açıkkalp E. Application of nanofluids in thermosyphons: a review. J Mol Liq. 2018;272:395–402. https://doi.org/10.1016/J.MOLLIQ.2018.09.101.

    Article  CAS  Google Scholar 

  5. Araiz M, Martínez A, Astrain D, Aranguren P. Experimental and computational study on thermoelectric generators using thermosyphons with phase change as heat exchangers. Energy Convers Manag. 2017;137:155–64. https://doi.org/10.1016/j.enconman.2017.01.046.

    Article  Google Scholar 

  6. Shukla R, Sumathy K. Design approach of a density-driven solar water heater system. J Therm Anal Calorim. 2019;136(1):113–20. https://doi.org/10.1007/s10973-018-7723-8.

    Article  CAS  Google Scholar 

  7. Tian E, He YL, Tao WQ. Research on a new type waste heat recovery gravity heat pipe exchanger. Appl Energy. 2017;188:586–94. https://doi.org/10.1016/j.apenergy.2016.12.029.

    Article  Google Scholar 

  8. Ramezanizadeh M, Nazari MA, Ahmadi MH, Lorenzini G, Kumar R, Jilte R. A review on the solar applications of thermosyphons. Math Model Eng Probl. 2018;5:275–80. https://doi.org/10.18280/mmep.050401.

    Article  Google Scholar 

  9. Alhuyi Nazari M, Ahmadi MH, Ghasempour R, Shafii MB, Mahian O, Kalogirou S, et al. A review on pulsating heat pipes: from solar to cryogenic applications. Appl Energy. 2018;222:475–84. https://doi.org/10.1016/j.apenergy.2018.04.020.

    Article  Google Scholar 

  10. Hagens H, Ganzevles FLA, van der Geld CWM, Grooten MHM. Air heat exchangers with long heat pipes: experiments and predictions. Appl Therm Eng. 2007;27:2426–34. https://doi.org/10.1016/J.APPLTHERMALENG.2007.03.004.

    Article  Google Scholar 

  11. Gandomkar A, Saidi MH, Shafii MB, Vandadi M, Kalan K. Visualization and comparative investigations of pulsating ferro-fluid heat pipe. Appl Therm Eng. 2017;116:56–65. https://doi.org/10.1016/j.applthermaleng.2017.01.068.

    Article  CAS  Google Scholar 

  12. Gandomkar A, Kalan K, Vandadi M, Shafii MB, Saidi MH. Investigation and visualization of surfactant effect on flow pattern and performance of pulsating heat pipe. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08649-z.

    Article  Google Scholar 

  13. Zamani R, Kalan K, Shafii MB. Experimental investigation on thermal performance of closed loop pulsating heat pipes with soluble and insoluble binary working fluids and a proposed correlation. Heat Mass Transf. 2019;55(2):375–84. https://doi.org/10.1007/s00231-018-2418-z.

    Article  Google Scholar 

  14. Jiao B, Qiu LM, Zhang XB, Zhang Y. Investigation on the effect of filling ratio on the steady-state heat transfer performance of a vertical two-phase closed thermosyphon. Appl Therm Eng. 2008;28:1417–26. https://doi.org/10.1016/J.APPLTHERMALENG.2007.09.009.

    Article  CAS  Google Scholar 

  15. Zhang M, Liu Z, Ma G. The experimental investigation on thermal performance of a flat two-phase thermosyphon. Int J Therm Sci. 2008;47:1195–203. https://doi.org/10.1016/J.IJTHERMALSCI.2007.10.004.

    Article  CAS  Google Scholar 

  16. Payakaruk T, Terdtoon P, Ritthidech S. Correlations to predict heat transfer characteristics of an inclined closed two-phase thermosyphon at normal operating conditions. Appl Therm Eng. 2000;20:781–90. https://doi.org/10.1016/S1359-4311(99)00047-2.

    Article  CAS  Google Scholar 

  17. Buschmann MH, Franzke U. Improvement of thermosyphon performance by employing nanofluid. Int J Refrig. 2014;40:416–28. https://doi.org/10.1016/J.IJREFRIG.2013.11.022.

    Article  CAS  Google Scholar 

  18. Huminic G, Huminic A. Numerical study on heat transfer characteristics of thermosyphon heat pipes using nanofluids. Energy Convers Manag. 2013;76:393–9. https://doi.org/10.1016/j.enconman.2013.07.026.

    Article  CAS  Google Scholar 

  19. Khandekar S, Joshi YM, Mehta B. Thermal performance of closed two-phase thermosyphon using nanofluids. Int J Therm Sci. 2008;47:659–67. https://doi.org/10.1016/J.IJTHERMALSCI.2007.06.005.

    Article  CAS  Google Scholar 

  20. Wlazlak A, Zajaczkowski B, Woluntarski M, Buschmann MH. Influence of graphene oxide nanofluids and surfactant on thermal behaviour of the thermosyphon. J Therm Anal Calorim. 2019;136(2):843–55. https://doi.org/10.1007/s10973-018-7632-x.

    Article  CAS  Google Scholar 

  21. Cacua K, Buitrago-Sierra R, Herrera B, Pabón E, Murshed SS. Nanofluids’ stability effects on the thermal performance of heat pipes. J Therm Anal Calorim. 2019;136(4):1597–614. https://doi.org/10.1007/s10973-018-7787-5.

    Article  CAS  Google Scholar 

  22. Abreu SL, Colle S. An experimental study of two-phase closed thermosyphons for compact solar domestic hot-water systems. Sol Energy. 2004;76:141–5. https://doi.org/10.1016/J.SOLENER.2003.02.001.

    Article  Google Scholar 

  23. Khazaee I, Hosseini R, Noie SH. Experimental investigation of effective parameters and correlation of geyser boiling in a two-phase closed thermosyphon. Appl Therm Eng. 2010;30:406–12. https://doi.org/10.1016/J.APPLTHERMALENG.2009.09.012.

    Article  CAS  Google Scholar 

  24. Noie SH. Heat transfer characteristics of a two-phase closed thermosyphon. Appl Therm Eng. 2005;25:495–506. https://doi.org/10.1016/J.APPLTHERMALENG.2004.06.019.

    Article  CAS  Google Scholar 

  25. Hussein HMS, El-Ghetany HH, Nada SA. Performance of wickless heat pipe flat plate solar collectors having different pipes cross sections geometries and filling ratios. Energy Convers Manag. 2006;47:1539–49. https://doi.org/10.1016/J.ENCONMAN.2005.08.009.

    Article  CAS  Google Scholar 

  26. Long ZQ, Zhang P. Impact of cooling condition and filling ratio on heat transfer limit of cryogenic thermosyphon. Cryogenics (Guildf). 2012;52:66–76. https://doi.org/10.1016/J.CRYOGENICS.2011.11.004.

    Article  CAS  Google Scholar 

  27. Guo W, Nutter DW. An experimental study of axial conduction through a thermosyphon pipe wall. Appl Therm Eng. 2009;29:3536–41. https://doi.org/10.1016/J.APPLTHERMALENG.2009.06.008.

    Article  CAS  Google Scholar 

  28. Amatachaya P, Srimuang W. Comparative heat transfer characteristics of a flat two-phase closed thermosyphon (FTPCT) and a conventional two-phase closed thermosyphon (CTPCT). Int Commun Heat Mass Transf. 2010;37:293–8. https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2009.11.004.

    Article  Google Scholar 

  29. Anderson W. Intermediate temperature fluids for heat pipes and loop heat pipes. In: 5th international energy conversion engineering conference and exhibit. Reston: American Institute of Aeronautics and Astronautics; 2007. https://doi.org/10.2514/6.2007-4836.

  30. Yaws CL. Chemical properties handbook: physical, thermodynamic, environmental, transport, safety, and health related properties for organic and inorganic chemicals. New York: McGraw-Hill; 1999.

    Google Scholar 

  31. Goodwin RD. Toluene thermophysical properties from 178 to 800 K at pressures to 1000 bar. J Phys Chem Ref Data. 1989;18:1565–636. https://doi.org/10.1063/1.555837.

    Article  CAS  Google Scholar 

  32. Kim JH, Simon TW, Viskanta R. Journal of heat transfer policy on reporting uncertainties in experimental measurements and results (editorial). J Heat Transf. 1993;115(1):5–6.

    Article  Google Scholar 

  33. Faghri A. Heat pipe science and technology. Columbia: Global Digital Press; 1995.

    Google Scholar 

  34. Nazari MA, Ghasempour R, Ahmadi MH, Heydarian G, Shafii MB. Experimental investigation of graphene oxide nanofluid on heat transfer enhancement of pulsating heat pipe. Int Commun Heat Mass Transf. 2018;91:90–4. https://doi.org/10.1016/j.icheatmasstransfer.2017.12.006.

    Article  CAS  Google Scholar 

  35. Qin Y, Zhang M, Hiller JE. Theoretical and experimental studies on the daily accumulative heat gain from cool roofs. Energy. 2017;129:138–47. https://doi.org/10.1016/J.ENERGY.2017.04.077.

    Article  Google Scholar 

  36. Qin Y, He Y, Wu B, Ma S, Zhang X. Regulating top albedo and bottom emissivity of concrete roof tiles for reducing building heat gains. Energy Build. 2017;156:218–24. https://doi.org/10.1016/J.ENBUILD.2017.09.090.

    Article  Google Scholar 

Download references

Acknowledgements

The first and second authors would like to thank the research department of Tarbiat Modares University for the financial grants received during the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Sadrameli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadrameli, S.M., Forootan, D. & Farajimoghaddam, F. Effect of working fluid inventory and heat input on transient and steady state behavior of a thermosyphon. J Therm Anal Calorim 143, 3825–3834 (2021). https://doi.org/10.1007/s10973-020-09294-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09294-7

Keywords

Navigation